Chpt 8 Bonding Genral Concepts

Bonding I

Chemical Bonds

 The forces that hold a group of atoms together so that they can function as a group.

Bond Energy

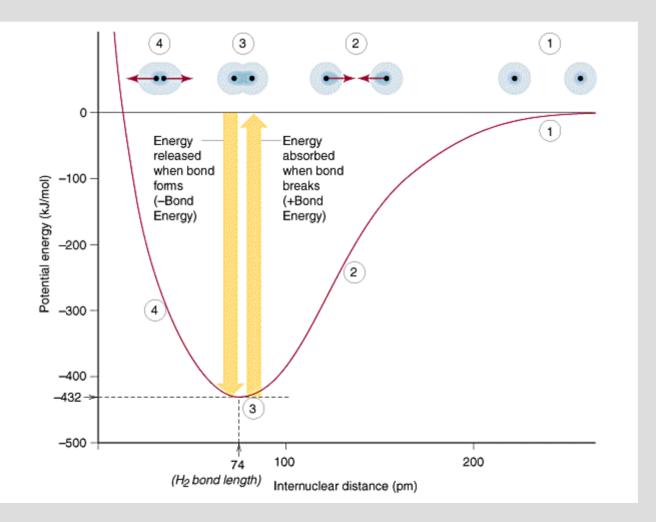
• The amount of energy needed to break a chemical bond.

Ionic Bonds

- Metal + Non-metal
- High ∆electronegativity
 - > 2.0 * (other definitions exist)
- Opposite charges attract so Coulomb's Law applies
 - $F = \underline{k}_{\underline{e}} \underline{Q}_{\underline{1}} \underline{Q}_{\underline{2}^{-}}$ where F is the force of attraction between

r² two point sources.

- E= (2.31 x 10⁻¹⁹ J•nm) (Q_1Q_2/r)
 - E is energy, Q_1 and Q_2 are the respective charges and r is radius or bond length.


Ionic Bonds

- Solving for Lattice Energy
- E= (2.31 x 10⁻¹⁹ J•nm) (Q_1Q_2/r)
- E is lattice energy, Q_1 and Q_2 are the respective charges and r is bond length.
- At 0.276 nm (2.76 Å) bond length for example in NaCl, E= -8.37 x 10⁻¹⁹ J. Negative energies represent attractions. Positive signs would be repulsion
 - E smaller as r increases.
 - Bond is a low energy configuration (large #s).

Ionic vs Covalent substances

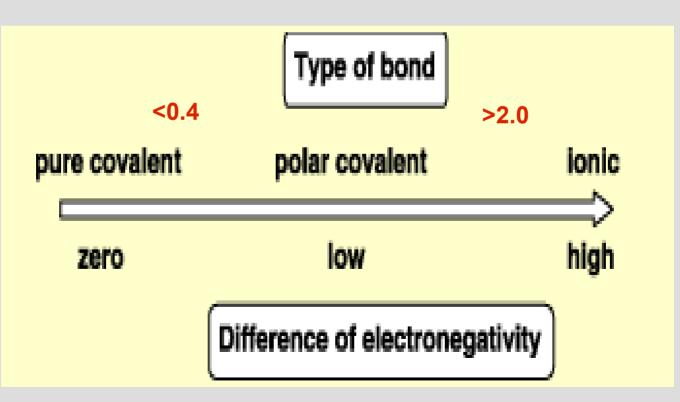
- Molecular substances
 Non conductors
 Low melting point
 Low solubilities in H₂O
- Ionic substances
 Conduct when dissolved or molten
 High melting points
 High solubilities in H₂O

Bond length vs Energy

Bond length

- 1) A bond will form if the energy of the aggregate is lower than that of the separated atoms.
- 2) The bond length is the distance at which system has minimal energy.
- 3) At this distance electrons are simutaneously attracted to both protons, yet not too close to repel each other

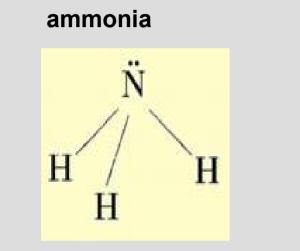
Covalent bonds

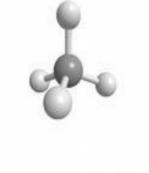

Bonds in which electrons are shared are called covalent.
They result in molecular compounds.

Electronegativity

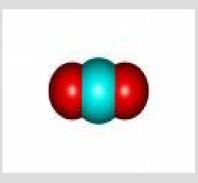
- Differences in electronegativity control the type of bond between atoms.
 - The ability of an atom in a molecule to attract shared electrons to itself.
 - Greediness for electrons
 - Best friend
 - •Older brother
 - Lunch room bully

Electronegativity


 Electronegativity difference controls type of bond between two atoms


Electronegativity

- Polar molecules must meet two criteria
 - 1. polar covalent bonds must be present.
 - 2. a net dipole moment must be present.
 - Dipoles must not cancel each other.
 - Non-symmetric arrangement.


Are these molecules polar?

methane

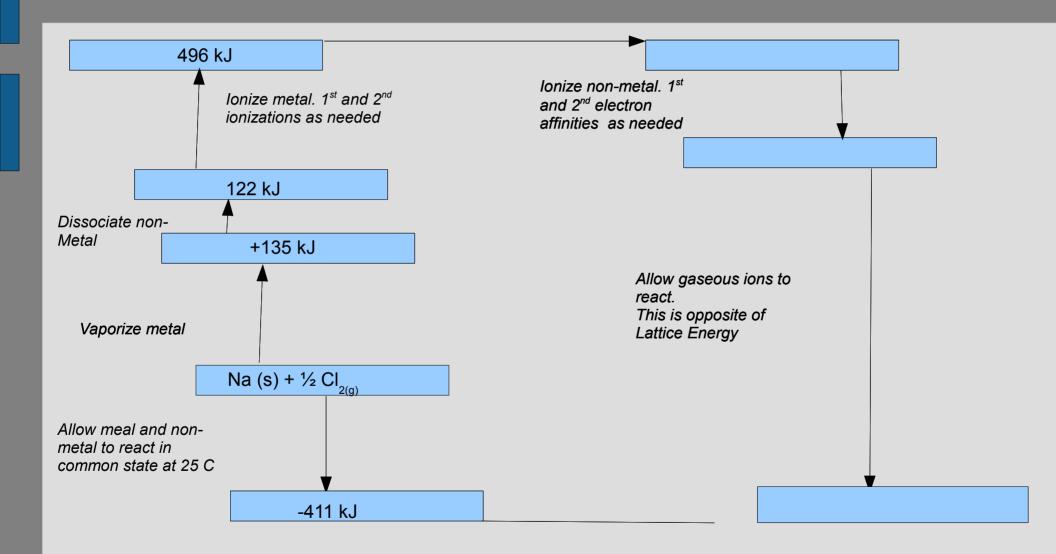
Carbon dioxide

lonic compounds

- Electronegativity values > 2.0
- Dissolve and yeild ions in solution
- Conduct electricity if molten or dissolved.
- Really only exist in solid state only

Ionic Compounds

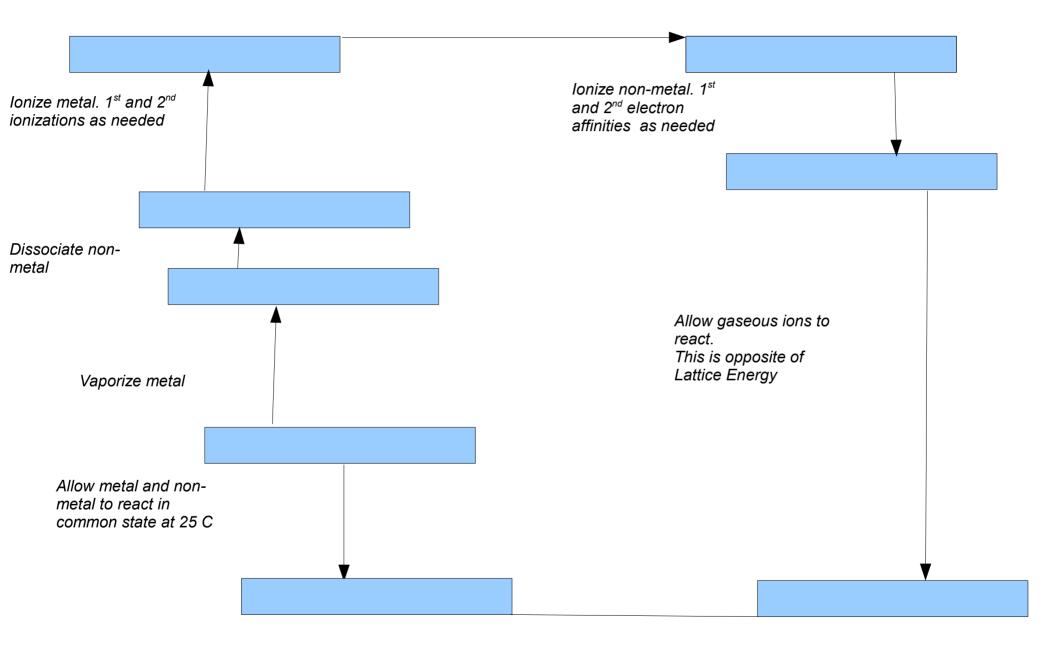
 3-d array of ions closely packed so as to minimize the + +, and - - repulsions and maximize the + - attractions. Electrons are transferred from metal to non-metal so both become isoelectric with nearest noble gas. Use criss-cross to predict formulas.


Lattice Energy

 Energy change when gaseous ions combine to form ionic solid. This is always exothermic

•
$$M^+(g) + X^-(g) \rightarrow MX(s)$$

- Older textbooks define lattice energy as the amount of energy required to convert 1 mole of ionic substance into gaseous ions.
 - Endothermic or + kJ


Lattice Energy (The steps)

Lattice Energy (The steps)

- Sublimation of solids to gases
- Ionization of cation (IE_1 and/or IE_2)
- Disassociation of anion (if diatomic wimp)
- Electron affinity for anion (making it an ion)
- Heat of formation (bringing it all together)

Born- Haber cycle Template ionic solids

Building a crystal from scratch

- Calculating Lattice energy
- Balance the equation: Li + $\frac{1}{2}$ Br₂ \rightarrow LiBr •
- Break into steps
 How much energy
 - $E = 161 \, kJ$ • 1. $Li(s) \rightarrow Li(g)$ $E = 520 \, kJ$
 - 2. $Li(q) \rightarrow Li(q) + e^{-1}$
 - 3. $\frac{1}{2} Br_2(I) \rightarrow 1/2Br_2(g)$
 - 4. $\frac{1}{2} Br_2(q) \rightarrow Br(q)$
 - 5. $Br(g) + e \rightarrow Br(g)$
- E = 95 kJ $E = -324 \, kJ$

E = 8 kJ

• 6. $Li + \frac{1}{2} Br_2 \rightarrow LiBr$ $E = +351 \, kJ$ • *U* = 811 kJ

Covalent Chemical Bonds

- •What is a chemical bond? ... Energy !!! ;)
- It takes 1652 kJ/mole to break CH₄ apart so on average a C-H bond consists of 413 kJ/mole of energy
- •What is the bond energy associated with C-Cl if chloromethane takes 1578 kJ/mole to break apart into its elements?

Bond Energy and Enthalpy

•Since bonds store (are) energy, adding up the energies of breaking old bonds and making new bonds works well to give us the Enthalpy of reaction.

•
$$\Delta H_{rxn} = \Sigma D_{(breaking)} - \Sigma D_{(making)}$$

• Somewhat counter-intuitive: breaking bonds takes energy. Making bonds releases energy

Heat of Formation from bond Energy

•What is ΔH_{rxn} for the reaction $H_2 + F_2$ 2HF

•
$$\Delta H_{rxn} = (D_{H-H} + D_{F-F}) - 2(D_{H-F})$$

- • $\Delta H_{rxn} = (1 \text{ mol } x \text{ 432 } kJ/mol + 1 \text{ mol } x \text{ 154 } kJ/mol)$
- •-- (2 mol x 565 kJ/mol)
- •-544 kJ/mol

•Checking against standard table of ΔH° 2mol x – 271 kJ/mol = -542 kJ/mol (so we are close enough).

Harder Example (Try on your own)

- •What is ΔH_{rxn} for forming icky nasty ozone destroying Freon 12 from methane, chlorine and fluorine?
- 1. Balance reaction:
- $\bullet CH_4 + 2CI_2 + 2F_2 \rightarrow CF_2CI_2 + 2HF + 2HCI$

Bond energies

- 2. Get bond energies from table (- = "bond")
 - C-H 413 kJ/mole
 - CI-CI 239 kJ/mole
 - F-F 154 kJ/mole
 - C-F 485 kJ/mole
 - C-Cl 339 kJ/mole
 - H-F 565 kJ/mole
 - H-Cl 427 kJ/mole

Example cont'd

- 1. $\Delta H_{rxn} = \Sigma D_{(breaking)} \Sigma D_{(making)}$
- 2. Energy in breaking bonds subtotal
 (4 mol C-H x 413kJ/mol) + (2 mol Cl-Cl x 239
 kJ/mol) + (2 mole F-F x 154 kJ/mol) = 2438 kJ

Continued

- 1. Energy in making bonds subtotal •2mol C-F x 485 kJ/mol + 2mol C-Cl x 339kJ/mol + 2 mol H-F x 565 kJ/mol + 2 mol H-Cl x 427 kJ/mol = 3632 kJ • 2. $\Delta H_{rxn} = \Sigma D_{(breaking)} - \Sigma D_{(making)}$
- • $\Delta H_{rxn} = 2438 \ kJ 3632 \ kJ = -1194 \ kJ$

(exothermic)

A reminder on sign convention

- Energy breaking bonds: (+) energy
 - as energy is required to be supplied to break bond.
- Energy making bonds: (-) energy
 - As bonds are energy lows they release energy to the environment.

•
$$\Delta H_{rxn} = \Sigma D_{(breaking)} + - \Sigma D_{(making)}$$

Lewis Dot Diagrams

- Total number of valence electrons
 - From compound formula and column on Per. Table
- ABA or central atom
- 2 electrons to form a bond
- 8 electrons per non-metal
 - Double and Triple bond as needed
- OK to short metals

Exceptions

- Central atom can exceed an octet
- 3rd row elements often exceed octet
- Boron (can be electron deficient)
- Sulfur (and other elements from 3rd period) can exceed octet.
 - They have unfilled 3d orbitals with nearly

the same energy level to store extra e's

Try some of these

- PCl₅
- •
- •
- BeCl₂
- •
- •
- |_3

- Odd numbers of electrons (How do they bond if Lewis structures require 2e- per bond?)
- Lewis structures and assigning oxidation numbers assign all electrons to the more electronegative species.
- Exaggerated charges.
- Enter Formal Charge.

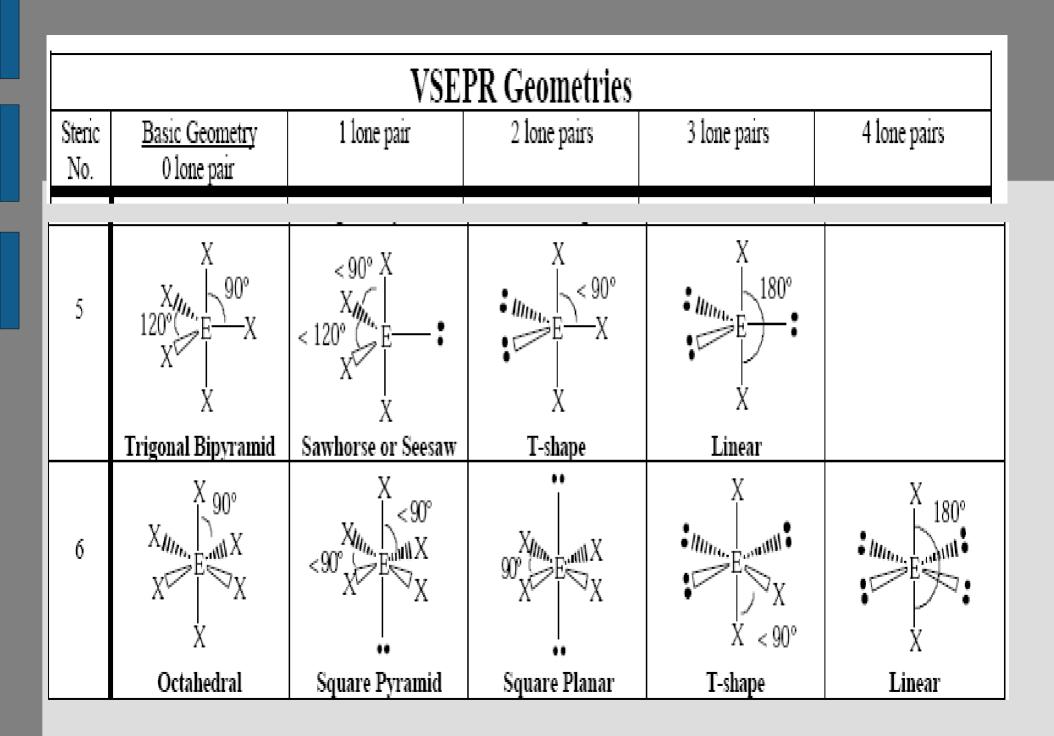
- Formal charge (trying to decide which wrong structure is right)
- Key
- Formal charge = # of valence electrons of free atom - # of electrons assigned when in a molecule.

- •Determine number of valence electrons in free neutral atom (column on PT)
- •Determine number of electrons belonging to atom in a molecule
 - Lone pairs of electrons belong to the atom
 - Shared electrons are <u>divided</u> between atoms in the molecule.
 - Sum of formal charges must equal charge on species (ion or molecule)

Example

- •1. SO_4^{-2} 32 total electrons
- •2. Lewis dot diagram
- •Obeys octet rule, every body happy....?

- •Calculate formal charges. S 6 ve 4 be = 2•O 6 ve - (6 lps + 1 be) = -1
- •Central atom too positive, O too negative.


D**S*(

Better !!! :)

- DB O's 4 + 1/2(4)=6
- 6-6= 0 FC
- SB O's 6+1/2(2)= 7
- 6-7 = -1 FC
- S 0 + 1/2(12)= 6
- 6-6 = 0 FC
- More things closer to zero.
- Neg FC with >En element
- FC adds to charge

- So this must be a plausible structure even though S now has
- 12 electrons!
- •In violation of the octet rule.
- •But it is a 3 row element!

VSEPR Geometries					
Steric No.	<u>Basic Geometry</u> 0 lone pair	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs
2	X - E - X Linear				
3	X E X X X X	× × < 120°			
	Trigonal Planar	Bent or Angular			
4	$X_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_$	X <i>I</i> u E X < 109°	X << 109°		
	Tetrahedral	Trigonal Pyramid	Bent or Angular		

