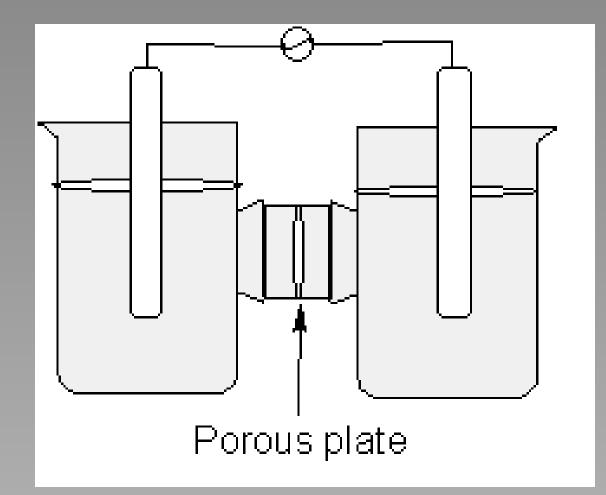
Chapter 17 Electrochemistry

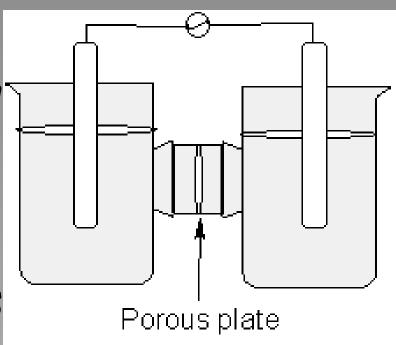
Nearing the end.

Chapter 17 Electrochemistry

- What is it?
- Why should we care?



Galvanic (voltaic) cells

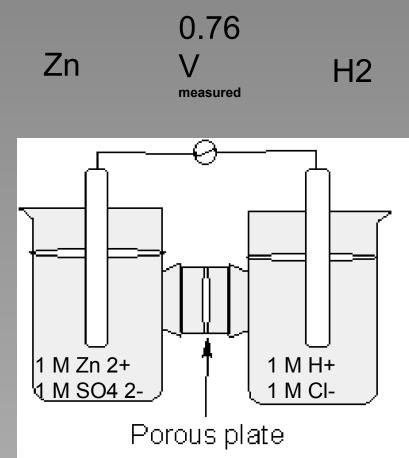

- Controlled redox reactions that generate current.
- A device that converts chemical potential energy into electrical energy
- Separate the oxidizing and reducing chemicals and make the electrons flow through a battery.

Schematic cell

Parts of a cell

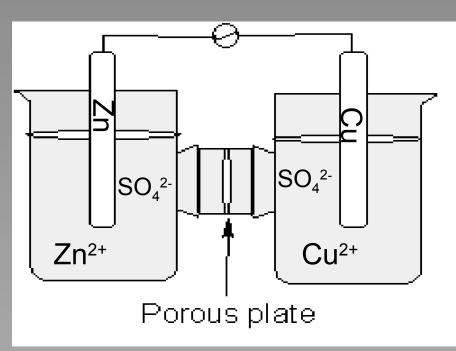
- Electrodes
- Anode: oxidation reactions
- (Anode and oxidize both begin with vowels)
- Cathode: reduction reactions
- Porous plate: allows ion exchange w/o much mixing

LEO says GER


Cell Potential (voltage) ε^{o}

- Standard Reduction Potentials
- Write a reducing reaction for the cathode (reaction higher on reduction potential list)
- Write an oxidizing reaction for the anode (reaction lower on reduction potential list)
 - Standard hydrogen electrode
 - 2 H⁺ + 2e⁻ \rightarrow H₂ is set equal to 0.00V
 - All other oxidizing and reducing agents are compared to this standard.

Cell Potential


 $2H^+ + 2e^- \rightarrow H_2 = 0.00 v$ $Zn \rightarrow Zn^{2+} + 2e^- = 0.76 v$ 0.76 v

1 molar strength is the standard concentration

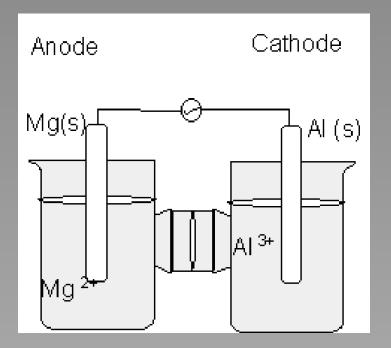
Example

 Calculate the voltage for a galvanic cell containing a Cu and a Zn electrode in a 1 M solution of CuSO₄ and ZnSO₄ respectively

Who oxidizes or reduces who

- Look on list
- Reaction on top (of list) runs as written (reduction)
- Reaction below, must be reversed so it becomes oxidation
- Remember to switch sign of voltage if reaction is flipped.

Don't be so shocking!!


- Cu ²⁺ + 2e⁻→ Cu
- Zn \rightarrow + Zn + 2e⁻
- 80

0.34 V <u>0.76 V</u> 1.10 V

Further example

 For the following cell, write the electron flow, write the half reactions and calculate the cell voltage.

Line notation

- Short hand so you don't have to draw beakers all the time :)
- Anode Cathode
- Mg(s) | Mg⁺²(aq) ||Al⁺³(aq) | Al(s)
- 2.37V + -1.66V
- = 0.71 V
- Spectator ions are omitted.

Cell Potential, Work and Free Energy

- Potential = volts = electromotive force
- This is also = work/charge or
- J/C where J is joules, C is coulombs
- If a cell does work on the Universe, it is losing energy or has -E