Complexes and Eqm

- •A complex ion is an <u>ion</u> composed of
- A metal
- A ligand : A ligand is a Lewis base (electron pair donor). They have lone pair(s) of electrons that can fill the empty orbital in the metal.
- Ligands can be neutral or negatively charged as long as they have electrons to donate.

NH₃, CN⁻, and H₂0 are common ligands

 Each has at least 1 pair of electrons to donate to the complex

Coordination Number

- Coordination number is the number of ligands surrounding the central metal ion.
- Remember from VSEPR theory, the number of neighbors controls your geometry.

Common coordination #s

Coordination Number	Examples
2	$Ag(NH_3)_2^-$
4	$CoCl_{4}^{2-}, Cu(NH_{3})_{4}^{2+}$
6	$Co(H_2O)_6^{2+}, Ni(NH_3)_6^{2+}$

Two types problems

- Equilibrium concentrations
- Solubility (This is cool)

Equilibrium concentrations

- Assumptions: metal concentration is quite low
- Ligand concentration is quite high.
- Complexes are made step-wise
- Complexes have 2 or more K's
- The K's are large numbers
- Complexes like to form, reactions go to completion

Example

- Calculate the concentrations of Ag⁺, Ag(S₂O₃)⁻, Ag(S₂O₃)₂³⁻ in a solution containing 2.86 M S₂O₃²⁻ and 4.29 x 10⁻⁴ M Ag⁺ (after mixing)
- $Ag^+ + S_2O_3^{2-} <=> Ag(S_2O_3)^- K_1 = 7.4 \times 10^8$
- $Ag(S_2O_3)^- + S_2O_3^{2-} <=> Ag(S_2O_3)_2^{3-}K_2^{2-} = 3.9$ x10⁴

Example continued

Work backwards

•
$$K_2 = [Ag(S_2O_3)_2^{3-}]$$

[Ag(S_2O_3)^-] [S_2O_3^2]

• $3.9 \times 10^4 = 4.29 \times 10^{-4}$

 $[Ag(S_2O_3)^-]$ (2.86)

• $[Ag(S_2O_3)^-] = 3.8 \times 10^{-9}$ plug this into K_1

Example pg 3

- $K_1 = [Ag(S_2O_3)^{-1}] = 7.4 \times 10^8$ $[Ag^+][S_2O_3^{-2^-}]$ • 7.4 x 10⁸ = <u>3.8 x 10^{-9}</u> [Ag+](2.86)
- [Ag+] = 1.8 x 10 ⁻¹⁸ M

In summary

- [Ag+] = 1.8 x 10 ⁻¹⁸ M
- $[Ag(S_2O_3)^-] = 3.8 \times 10^{-9}$
- $[Ag(S_2O_3)_2^{3-}] = 4.29 \times 10^{-4}$
- $[S_2O_3^{2-}] = 2.86 \text{ M}$
- Within rounding $[S_2O_3^{2-}]$ is unchanged, and all silver has been converted to $Ag(S_2O_3)_2^{3-}$

Solubility problems

- Recall in Qual, Unknown 1 the first procedure is to add HCI. This is a source of CI- ions. If you get a precipitate, Pb²⁺, Ag⁺, and/or Hg⁺ must be present.
- We dissolve the PbCl₂ by heating. It has the highest Ksp and is most sensitive to heating.
- How then to we dissolve the insoluble AgCI?

Solubility Rxn and Complexes

- How can you dissolve an insoluble salt?
- Add a ligand (Lewis Base) that the metal likes as much as it likes the current (insoluble anion).
- AgCl <==> Ag⁺ + Cl⁻ K_{sp} = 1 x 10⁻¹⁰
- By LeChatelier's AgCI <==> Ag⁺ + Cl⁻
- Making a complex decreases the Ag+ and the reaction dissolves to replace missing Ag+

So, For the math

1) Balanced chemical equations for all steps.
Use Hess' Law and cancel.

$$\begin{array}{rcl} AgCl(s)_{<==>}Ag^{+} + Cl^{-} & K_{sp} = 1.6 \times 10^{-14} \\ Ag^{-} + NH_{3}^{<==>}Ag(NH_{3})^{+} & K_{1} = 2.1 \times 10^{3} \\ Ag(NH_{3})^{+} & NH_{3}^{<==>}Ag(NH_{3})_{2}^{+} & K_{2} = 8.2 \times 10^{3} \\ \hline AgCl + 2NH_{3}^{<==>}Ag(NH_{3})_{2}^{+} + Cl^{-} & K = K_{sp}^{-}K_{1}^{-}K_{2} \end{array}$$

Solubility cont.

- What is the solubility of AgCl in a strong excess of ammonia, say 10.0 M?
- [Cl-] = x
- $[Ag(NH_3)_2] = x also$
- $[NH_3] = 10 2x$ (review equation)
- K= 2.8 x10⁻³ = $[Ag(NH_3)_2][CI^2]$ [NH₃]²

Substitute and Solve

• 2.8 x 10⁻³ = x^2

$$(10.0 - 2x)^2$$

Sqrt both sides

$$(10.0 - 2x)$$

 x = 0.48 M !!!! So we got it to dissolve. Great when theory agrees with real life