## Chapter 15 Aqueous Equilibrium

Buffers and other phenomena

#### Review

- Recall when you hydrolyze a weak base the reaction looks like this:
- B +  $H_2O \iff BH + OH^$ base acid conj conj acid base

## Buffered solutions

- Resist changes in pH when an acid or a base is added.
- Are made from
  - -A weak acid and its salt
  - -A weak base and its salt

#### Acid-Salt buffers

- Acid must be a weak acid. This means it has a reservoir of molecules from which a proton can be seperated if the need arises.
- The salt is made with the common anion of the acid (the acid's conjugate base) and the cation of a strong base. Example  $NaC_2H_3O_2$ can be thought of as resulting from NaOH +  $HC_2H_3O_2$

# Some examples of Acid/Salt pairs

| Weak Acid    | Formula<br>of the acid         | Example of a salt of the weak acid                                 |  |
|--------------|--------------------------------|--------------------------------------------------------------------|--|
| Hydrofluoric | HF                             | KF – Potassium fluoride                                            |  |
| Formic       | НСООН                          | KHCOO - Potassium formate                                          |  |
| Benzoic      | C <sub>6</sub> H₅COOH          | NaC <sub>6</sub> H <sub>5</sub> COO - Sodium benzoate              |  |
| Acetic       | CH₃COOH                        | NaH <sub>3</sub> COO - Sodium acetate                              |  |
| Carbonic     | H <sub>2</sub> CO <sub>3</sub> | NaHCO3 - Sodium bicarbonate                                        |  |
| Propanoic    | $HC_3H_5O_2$                   | NaC <sub>3</sub> H <sub>5</sub> O <sub>2</sub> - Sodium propanoate |  |
| Hydrocyanic  | HCN                            | KCN - potassium cyanide                                            |  |

#### **Base/Salt Buffers**

• The salt in a base-salt buffer will include the cation of the base, and an anion the comes from a strong acid. Common anions would be chloride (HCl) and nitrate (HNO<sub>3</sub>)

# Base/salt pairs

| Base        | Formula of<br>the base                        | Example of a salt of the weak acid                                                    |  |
|-------------|-----------------------------------------------|---------------------------------------------------------------------------------------|--|
| Ammonia     | NH <sub>3</sub>                               | NH <sub>4</sub> Cl - ammonium chloride                                                |  |
| Methylamine | CH <sub>3</sub> NH <sub>2</sub>               | CH <sub>3</sub> NH <sub>2</sub> Cl - methylammonium chloride                          |  |
| Ethylamine  | $C_2H_5NH_2$                                  | C <sub>2</sub> H <sub>5</sub> NH <sub>3</sub> NO <sub>3</sub> - ethylammonium nitrate |  |
| Aniline     | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | C <sub>6</sub> H <sub>5</sub> NH <sub>3</sub> Cl - aniline hydrochloride              |  |
| Pyridine    | $C_5H_5N$                                     | C <sub>5</sub> H <sub>5</sub> NHCl - pyridine hydrochloride                           |  |

# Why do buffers work

- Consider an aqueous solution of HF: HF <===> H + F- according to LeChatelier's principle, what would happen to the pH if we add NaF?
- $HF \iff HF \iff H^+ + F_-$
- Na <==> Na++F-
- This would result in
- HF  $\leq == > H^+ + F^- + Na^+$  the common ion reverses the dissociation of HF and so more is molecular. pH goes up.

## Base example of common ion

- $NH_3 + H_2O <==> NH_4^+ + OH^-$
- $NH_4Cl(s) \le NH_4^+ + Cl^-$



 Adding the common ion crowds the NH<sub>4</sub><sup>+</sup> this leads to less OH<sup>-</sup> being formed in the first reaction. pH goes down.

## Acid/Salt buffer example

- Calculate the pH of a buffer system containing 1.0 M HF (Ka = 7.2 x 10<sup>-4</sup>) and 1.0 M NaF.
- $HF(aq) \le H^{+}(aq) + F^{-}(aq)$
- $Ka = [H+][F-] = 7.2 \times 10^{-4}$ [HF]

## Example cont'd

- HF- H+ F-
- I 1.0 0 1.0
- C 1.0 x x 1.0 + x

E

# Example continued

- $\underline{x(1.0 + x)} = 7.2 \times 10^{-4}$
- 1.0 x
- simplifies (usually)
- $\underline{\mathbf{x}(1.0)} = 7.2 \times 10^{-4}$
- 1.0
- $x = 7.2 \times 10^{-4}$
- pH = 3.14

## Example cont'd

- HF- H+ F-
- I 1.0 0 1.0
- C 1.0 -x x 1.0 +xE 1.0 -x x -1.0 +x

# Couple of useful equations!!!

- When dealing with buffers, keep in mind
- [H+] = Ka[<u>HA]</u> [A-]
- In buffer problems HA and A- are known as is Ka

• 
$$pH = pKa + log \underbrace{[A-]}_{[HA]} = pKa + log \underbrace{[base]}_{[acid]}$$

#### 2nd Acid/Salt buffer

- Calculate the pH of a solution which contains 0.50 M acetic acid  $(HC_2H_3O_2)$  Ka = 1.8 x 10<sup>-5</sup>) and 0.50 M sodium acetate.
- What are the possible ions in solution  $HC_2H_3O_2$ ,  $Na^+$ ,  $C_2H_3O_2^-$ , and  $H_2O_2^-$
- What reaction will control equilibrium
- $HC_2H_3O_2 <==> H^+ + C_2H_3O_2^-$

# Example 2 cont'd

- Write the Ka expression
- Ka =  $[H+] [C_2H_3O_2-]$ [HC\_2H\_3O\_2]
- Set up and ice table and write an expression for the changes

#### ICE Table

HAc- H+ Ac-

I 0.50 0 0.50

E

C 0.50 - x x 0.50 + x

## Substitute and Solve

• 
$$1.8 \ge 10^{-5} = (x)(0.50 + x)$$
  
(0.50 - x)

• Since Ka is small then x should be small we can simplify this to:

• 
$$1.8 \ge 10^{-5} = (x)(0.50)$$
  
(0.50)

- $1.8 \ge 10^{-5} = x$  (x is less than 5%)
- pH = 4.74

# pH change in a buffer problem

- Now take this buffer system and add 0.010 mol solid NaOH.
- What are the species present in water:
- $HC_2H_3O_2$ ,  $Na^+$ ,  $C_2H_3O_2^-$ ,  $OH^-$ , and  $H_2O$
- OH- will cause  $HC_2H_3O_2$  to lose H+ to neutralize OH-

# pH change

- 1 do the stoichiometry of the problem, then worry about eqm.
- Reaction:
- $HC_2H_3O_2 + OH^- <==> C_2H_3O_2^- + H_2O$

## ICE Table it

- HAc- OH- Ac-
- I 1.0 L x .50 M 0.010 mol 1.0 L x .50 M = 0.50 mol = 0.50 mol
- C 0.50 –0.010 0.010 mol 0.50 + 0.01 mol
- E 0.49 mol 0.0 mol 0.51 mol

# pH change cont'd

- Now substitute this into a Ka expression
- 1.8 x  $10^{-5} = [H+][C_2H_3O_2-]$ [HC\_2H\_3O\_2]
- $1.8 \ge 10^{-5} = (x)(0.51 + x)$ (0.49-x)
- Since Ka is small simplify to:
- $(x)(0.51) = 1.8 \times 10^{-5}$ (0.49)

# pH change cont'd

- $X = [H+] = 1.7 \times 10^{-8}$
- $\log 1.7 \ge 10^{-8} = 4.76$
- the orginal solution had a pH of 4.74!
- pH hardly budged!!!!
- If we had added this much NaOH to pure water the pH would have ended at 12.00!!!
- Buffers really do work.

## Got buffer?



# pH of a buffer and pH change

- A buffered solution contains 0.25 of NH<sub>3</sub> (Kb = 1.8 x 10<sup>-5</sup>) and 0.40 M NH<sub>4</sub>Cl What is the pH of this solution
- Write the major species in solution

• Write a Kb expression.

# pH of a buffer and pH change

NH<sub>3</sub> NH4+ OH-

I 0.25 0.40 0

C 0.25-x 0.40 + x + x

E

Substitute and solve the Kb

#### Substituting and solvation ;)

- Kb = (0.40 + x) x
- 0.25-x
- Since Kb is small
- $Kb = (0.40) x = 1.8 \times 10^{-5}$
- 0.25
- $x = 1.1 \times 10^{-5}$

# pH of a buffer and pH change

- NH<sub>3</sub> NH4+ OH-
- I 0.25 0.40 0
- C 0.25-x 0.40 + x + x
- E 0.25 0.40  $1.1 \times 10^{-5}$

### So what is the pH?

- (-)  $\log (1.1 \times 10^{-5}) = 4.95 = pOH$
- pH = 9.05
- pH without the common ion would've been 11.3 !!!

# Ex. 2 pH of buffer solution

- What is the pH of a solution of 0.75M lactic acid (HC<sub>3</sub>H<sub>5</sub>O<sub>3</sub>) and sodium lactate 0.25 M. Ka =  $1.4 \times 10^{-4}$
- HLac, Lac<sup>-</sup>Na<sup>+</sup> and H<sub>2</sub>O major species
- $HC_3H_5O_3$   $\leftarrow$   $H^+$  +  $C_3H_5O_3^-$
- Ka =  $[\underline{H^+}][\underline{C_3H_5O_3^-}] = 1.4 \times 10^{-4}$ [HC<sub>3</sub>H<sub>5</sub>O<sub>3</sub>]

#### pH of a buffer

HLac H+ Lac-

I 0.75 0 0.25

C 0.75-x + x 0.25+x

E

#### Substitute and solve

- Ka =  $[\underline{H^+}][\underline{C_3H_5O_3^-}] = 1.4 \times 10^{-4}$ [HC<sub>3</sub>H<sub>5</sub>O<sub>3</sub>]
- Ka =  $(x)(0.25 + x) = 1.4 \times 10^{-4}$ (0.75 - x)
- Since x is small
- Ka =  $(x)(0.25) = 1.4 \times 10^{-4}$ (0.75)
- $[H+] = 4.2 \text{ x } 10^{-4} \text{ and } pH = 3.38$

# Buffering capacity

- A weak solution of a buffer (low concentration) and a strong solution of a buffer (high concentration) will have the same pH ( controlled by the dissassociation)
- The concentrated buffer will have much more buffer capacity. It will resist changing pH when more acid or base is added.

#### Further example

- Calculate the pH and pH change that results from bubbling 0.010 mol HCl gas through 1.0 L of 5.0 M HAc and 5.0 M NaAc
- Use short cut of Henderson-Hasselbalch eqn
- pH=pKa + log ([Ac-]/[HAc])
- $pH=-log(1.8x10^{-5})+log(1)$
- pH = 4.74 (before adding HCl)

#### Further example

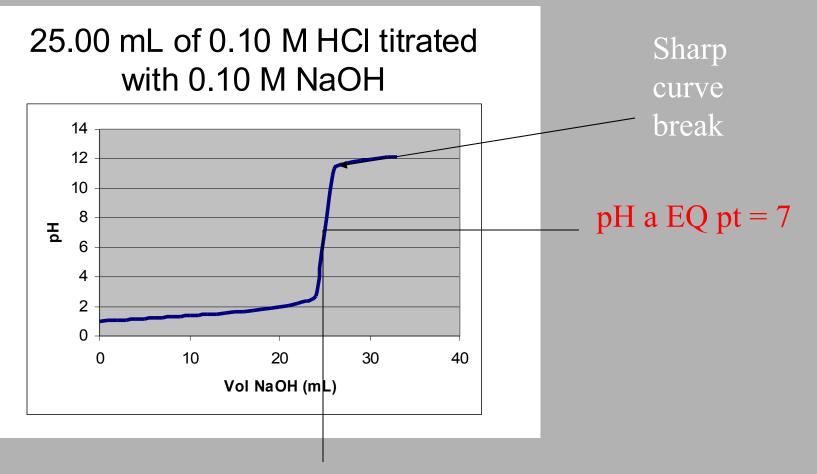
- Major species: H+, Cl-,  $C_2H_3O_2$ -, Na+,  $H_2O$ ,
- Strong conjugate base so the new H+ from the HCl will form molecular HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub>.
  Assume this reaction will go to completion, as long as there is C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>-
- Reaction of interest:
- $H^+ + C_2 H_3 Q_2^- ==> HC_2 H_3 Q_2$ From HCl From eqm Can't contribute to pH

## Modified ICE table for stoich.

|          | $\mathrm{H}^+$ | $C_2H_3O_2$ - | $HC_2H_3O_2$ |
|----------|----------------|---------------|--------------|
| • Before | 0.010 M        | 5.00 M        | 5.00 M       |
| • After  | 0              | 4.99 M        | 5.01 M       |

• 
$$pH = pKa + log \begin{bmatrix} A - \\ HA \end{bmatrix}$$

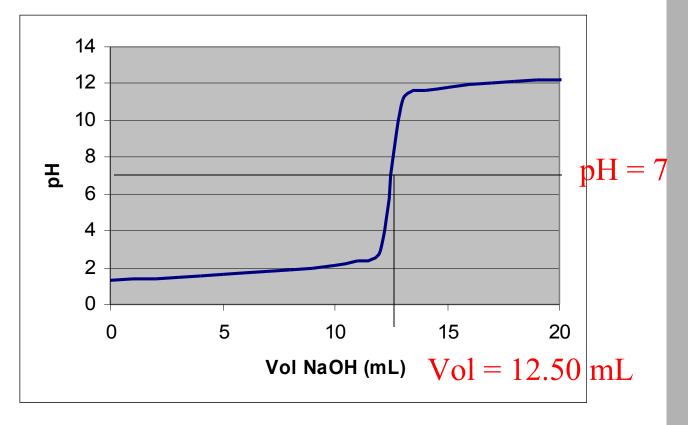
 pH = 4.74 + log (4.99/5.01) = 4.74 - 0.0017 or 4.74 So the buffer consumed all added H
+


### Selecting a buffer system

- Sometimes a chemist needs a buffer for a specific pH.
- Buffers work best (highest buffer capacity when [A-] = [HA] or [A-]/[HA] = 1
- so substitute this in the HH eqn
- pH = pKa + log([A-]/[HA]) but this is 1 so..
- pH = pKa or as close as you can get.

#### Titrations

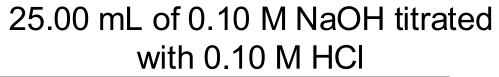
 Titration is the stepwise addition of a known concentration of acid or base into an unknown until the unknown is just consumed. This is usually observed by the change of an indicator.

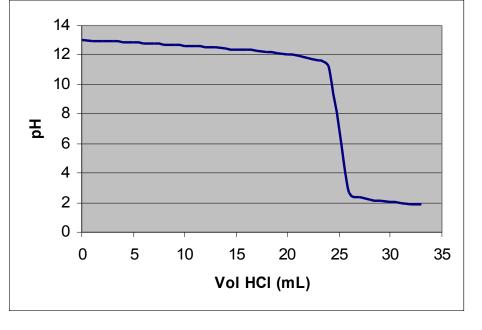

#### Strong Acid/Strong Base



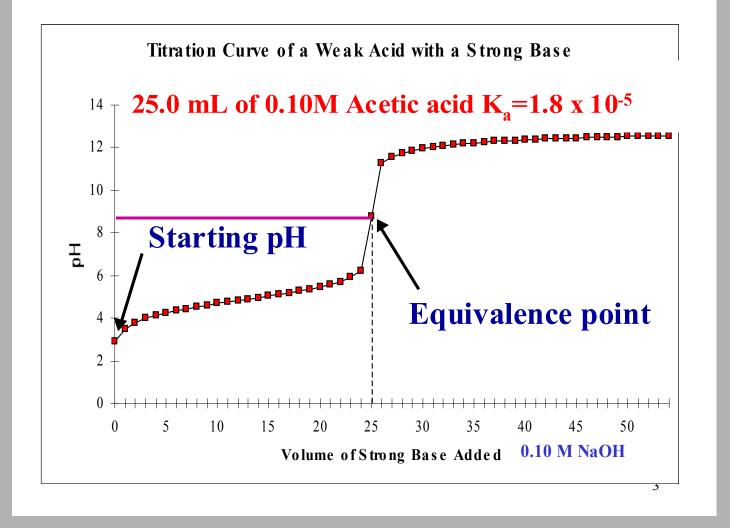
Equivalence point Na x Va = Nb x Vb

### Reading Titration graphs


# 25.00 mL of ? M HCl titrated with 0.10 M NaOH



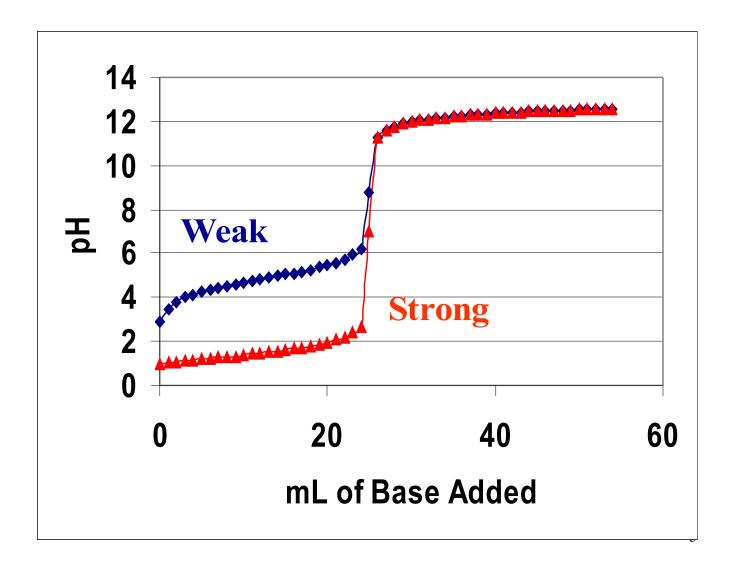

#### Reading Titration curves


- 12.50 mL x 0.10 N = 25.00 mL x ? N HCl?
- 0.05 N HCl
- HCl = 1 eq/mole so
- 0.05 M HCl is strength of unknown acid.

#### Strong Base titrated w acid.



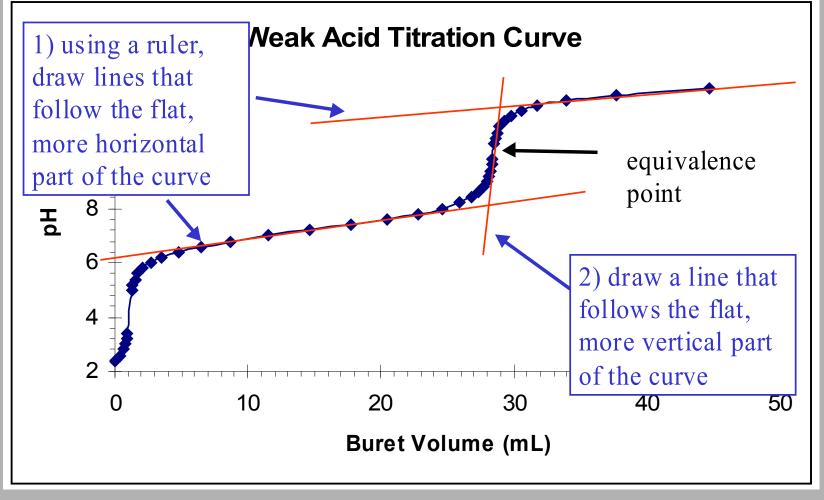



#### Titration of weak acid

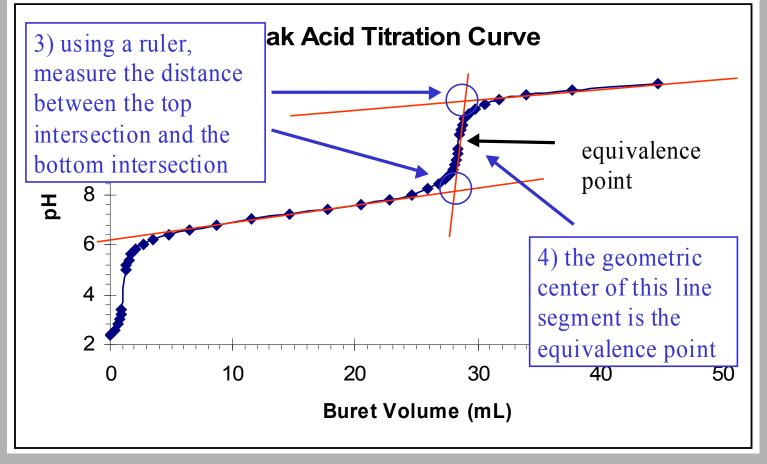


#### Check for understanding

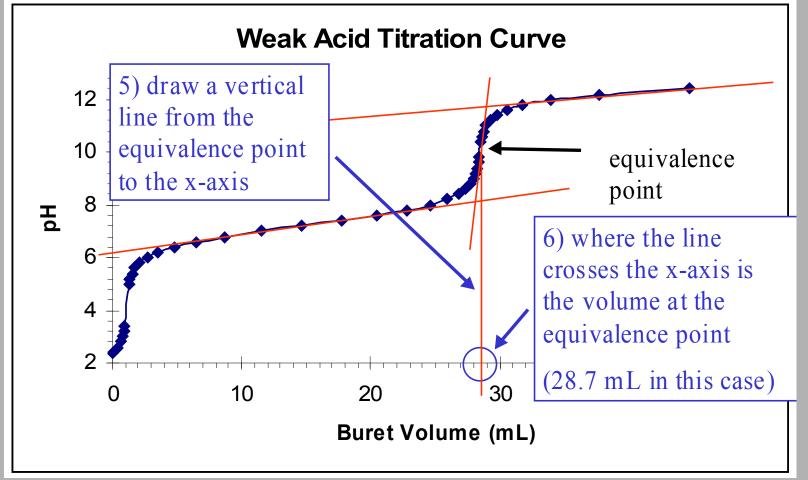
- Equivalence point is defined as
- Na x Va = Nb x Vb
- This is not typically pH=7 when dealing with weak acids!!!
- Why?


#### Comparison strong/ weak acid

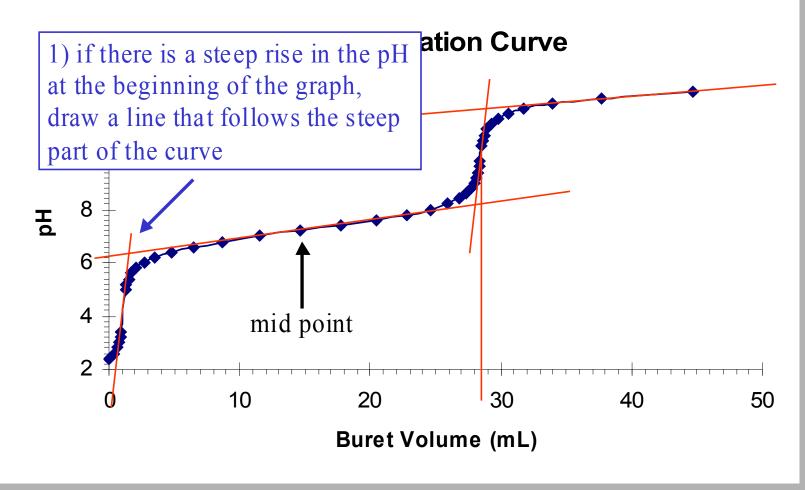



### Weak acids/Strong Acids

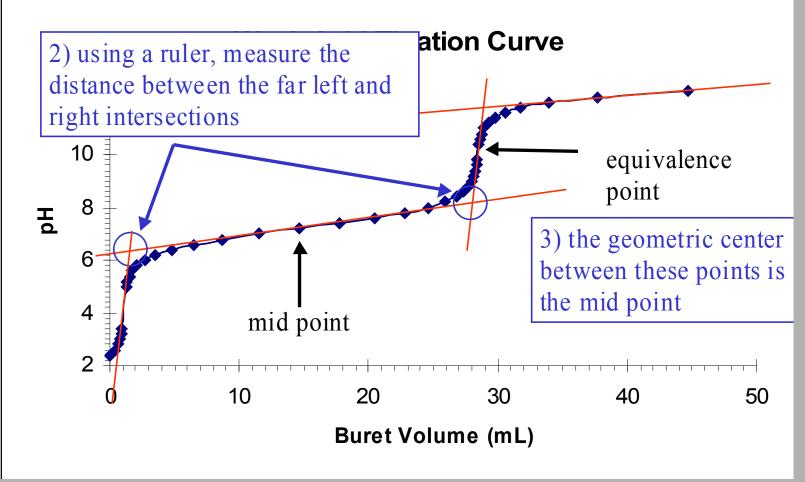
- The weaker the acid the lower the Ka
- The lower the Ka
- The shallower the titration curve is
- Higher initial pH
- The more sloped the equivalence break point transition is.


#### Find the Equivalence Point (Geometric method)

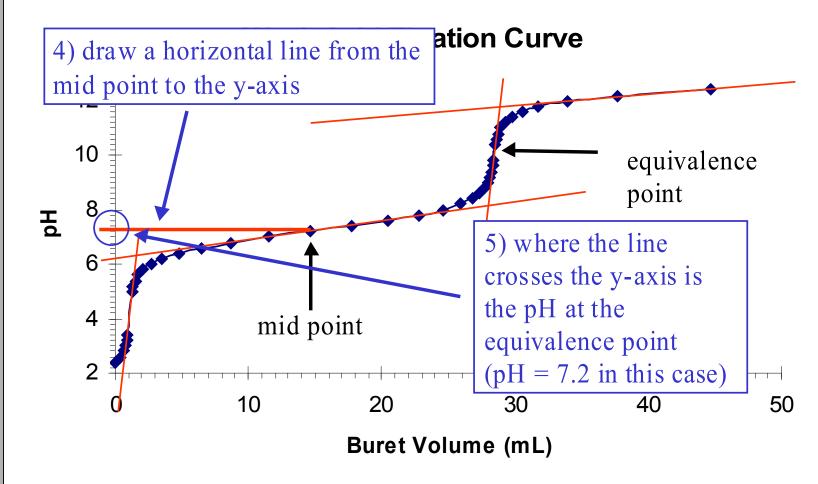



#### Find the Equivalence Point (Geometric method)




#### Find the Equivalence Point (Geometric method)




# Find the Mid Point (Geometric method)



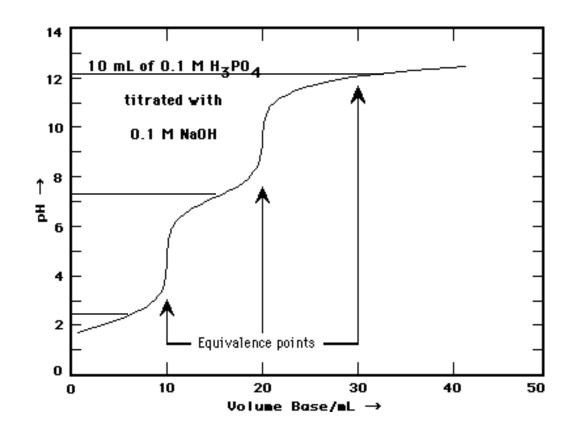
# Find the Mid Point (Geometric method)



# Find the Mid Point (Geometric method)



## Finding Ka


At mid-point, some thing miraculous happens



- $pH_{mid} = pKa$
- So time for antilog  $10^{-pKa} = Ka$
- $10^{-7.2} = 6.31 \times 10^{-8}$

### What are the $K_{a1}$ , $K_{a2}$ , and $K_{a3}$

#### Titration curve of phosphoric acid,



#### How close did you get?

 $H_3PO_{4(s)} + H_2O_{(1)} \le H_3O_{(aq)}^+ + H_2PO_{4(aq)}^- K_{a1} = 7.5 \times 10^{-3}$ 

 $H_2PO_4^{-}(aq) + H_2O_{(1)} \le H_3O_{(aq)}^{+} + HPO_4^{2-}(aq) K_{a2} = 6.2 \times 10^{-8}$ 

 $HPO_{4}^{2-}(aq) + H_2O_{(1)} <=> H_3O_{(aq)}^+ + PO_{4}^{3-}(aq) K_{a3} = 2.14 \times 10^{-13}$