Kinetics

Chapter 12, Zumdahl and Zumdahl

Kinetics

- The study of reaction rates
 - The factors that determine the speed of a reaction
- Reaction mechanisms

Reaction Rate

- Change in concentration over time
 - $[A]_2 [A]_1$
 - t₂- t₁ • Or <u>Δ[A]</u> Δt

Reaction Rates:

- Can measure disappearance of reactants
- 2. Can measure appearance of products
- 3. Are proportional stoichiometrically

Concentration

Reaction Rates:

4. Are equal to the slope tangent to that point

5. Change as the reaction proceeds, if the rate is dependent upon concentration

 $\frac{\Delta[NO_2]}{\Delta t} \neq \text{constant}$

Rate Laws

Differential Rate Law

- Used to show the relationship between the reaction rate and the concentrations of the reactants
- Referred to as "The Rate Law" in problems
- Integrated Rate Law
 - Shows the relationship of concentration of reactants to time.

Determining Rate Laws

- Initial conditions
 - concentration of products so small that it can be ignored.
- Need multiple sets of experimental data showing different concentrations and the measured or observed rates of reaction
- Determine the relationship between concentration and rate.

Rate Laws

- Zero order
 - $-\operatorname{Rate} = k [A]^{0}$
- 1st order
 - -Rate = k [A]¹
- 2nd order
 - $\operatorname{Rate} = k[A]^2$

Rate Laws

- More than 1 reactant
- Rate = $k[A]^m[B]^n$
- Overall reaction order
- Order WRT A = m
- Order WRT B = n
- Overall order = m+n

Initial conditions method

Problem - Write the rate law, determine the value of the rate constant, k, and the overall order for the following reaction:

$2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$

Experiment	[NO]	[Cl ₂]	Rate
	(mol/L)	(mol/L)	Mol/L · s
1	0.250	0.250	1.43 x 10 ⁻⁶
2	0.500	0.250	5.72 x 10 ⁻⁶
3	0.250	0.500	2.86 x 10 ⁻⁶
4	0.500	0.500	11.4 x 10 ⁻⁶

Initial conditions method

Part 1 - Determine the values for the exponents in the rate law: $R = k[NO]^{\times}[Cl_2]^{\gamma}$

Experiment	[NO] (mol/L)	[Cl ₂] (mol/L)	Rate Mol/L·s
1	0.250	0.250	1.43 x 10 ⁻⁶
2	0.500	0.250	5.72 x 10 ⁻⁶
3	0.250	0.500	2.86 x 10 ⁻⁶
4	0.500	0.500	1.14 x 10 ⁻⁵

In experiment 1 and 2, $[Cl_2]$ is constant while [NO] doubles. The rate quadruples, so the reaction is second order with respect to [NO] $\therefore R = k[NO]^2[Cl_2]^{\gamma}$

Initial concentrations

- Find a pair of experiments in which the initial concentrations are <u>double</u>.
- Then see how the rate varies
- Look for 2ⁿ
- Where n is the order of that reactant

Initial conditions method

Part 1 - Determine the values for the exponents in the rate law: $R = k[NO]^2[Cl_2]^{\gamma}$

Experiment	[NO]	[Cl ₂]	Rate
	(mol/L)	(mol/L)	Mol/L·s
1	0.250	0.250	1.43 x 10 ⁻⁶
2	0.500	0.250	5.72 x 10 ⁻⁶
3	0.250	0.500	2.86 x 10 ⁻⁶
4	0.500	0.500	1.14 x 10 ⁻⁵

In experiment 2 and 4, [NO] is constant while $[Cl_2]$ doubles. The rate doubles, so the reaction is first order with respect to $[Cl_2]$ $\therefore R = k[NO]^2[Cl_2]$

Initial conditions method

Part 2 - Determine the value for k, the rate constant, by using any set of experimental data: R = k[NO]²[Cl₂]

Experiment	[NO]	[Cl ₂]	Rate
	(mol/L)	(mol/L)	Mol/L·s
1	0.250	0.250	1.43 x 10 ⁻⁶

$$1.43 \, \mathbf{x} 10^{-6} \, \frac{mol}{L \cdot s} = k \left(0.250 \, \frac{mol}{L} \right)^2 \left(0.250 \, \frac{mol}{L} \right)$$

$$k = \left(\frac{1.43 \, x \, 10^{-6}}{0.250^3}\right) \left(\frac{mol}{L \cdot s}\right) \left(\frac{L^3}{mol^3}\right) = 9.15 \, x \, 10^{-5} \, \frac{L^2}{mol^2 \cdot s}$$

Writing a rate law

- After the exponents of the rate law are known
- Solve for k
- Rate = $k [NO]^2 [C1]$
- Pick any rate from the table
- Everything is known except the rate constant.

Writing a rate law

Part 3 – Determine the overall order for the reaction.

 $R = k[NO]^{2}[Cl_{2}]$ 2 + 1 = 3 $\therefore \text{ The reaction is } 3^{rd} \text{ order}$

Overall order is the sum of the exponents, or orders, of the reactants

3 orders are common

- Zero order
 - -Rate = k [A]⁰
 - -Rate = k
- 1st order
 - $\operatorname{Rate} = k[A]^1$
- 2nd order
 - $\operatorname{Rate} = k[A]^2$

Example: $NH_4^+ + NO_2^- - N_2 + H_2^-$

 $[NH_4^+]$ $[NO_2^-]$ Rate0.100M0.0050M1.35 $\times 10^{-7}$ 0.100M0.0100M2.70 $\times 10^{-7}$ 0.200M0.0100M5.40 $\times 10^{-7}$

Rate = $k[NH_4^+]^n [NO_2^-]^m$

Example

- Experiment 2 to 3
- $[NH_4^+]= 2x$ and Rate = 2 or 2^m
- Experiment 1 to 2
- [NO2-] = 2 and Rate = 2 or 2^n

Example

- Rate Law
- Rate = $k[NH_4^+][NO_2^-]$
- $1.35 \ge 10^7 = k (0.100)(0.0050)$
- k= 2.7 x 10⁻⁴ L/mol·s

Time vs Concentration

- Graph changes in concentration over time
- Determine the order of reaction directly from graph.
- Zero Order: Time vs concentration linear
- 1st Order: Time vs ln concentration linear
- 2nd Order: Time vs 1/concentration linear

Integrated Rate Law

- $2N_2O_5(g) \rightarrow 4NO_2 + O_2$
- T (s) [N2O5]
- 0 0.100 M
- 50 0.0707 M
- 100 0.0500 M
- 200 0.0250M
- 300 0.0125M
- 400 0.00625M

Time vs Concentration

Time vs ln[concentration]

Time vs 1/[concentration]

Integrated rate law

- Ln[N2O5] is linear so... this is a 1st order reaction with respect to N2O5 !
- What is the value for k the reaction constant.

 Λt

• Slope of line = $\Delta \ln[N2O5]$

Integrated Rate Law

• <u>-2.649 - -2.303</u>

50 - 0

• <u>-0.346</u>

50

• $k = 6.92 \times 10^{-3}/s$

Half-lives of reaction

• Time required for reactant(s) to be reduced by 1/2.

- Half-life of a first order reaction ٠
- -life of a first order reaction The integrated first order rate law can be rewritten as: $\ln\left(\frac{[A]_0}{[A]}\right) = kt$

The half-life of a reaction = time it takes for $[A] = [A]_0/2$

 $[N_2O_5]$ (mol/L)

Rate Laws Summary

	Zero Order	First Order	Second Order
Rate Law	Rate = k	Rate = $k[A]$	Rate = $k[A]^2$
Integrated Rate Law	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
Plot the produces a straight line	[A] versus <i>t</i>	ln[A] versus t	$\frac{1}{[A]}$ versust
Relationship of rate constant to slope of straight line	Slope = -k	Slope = -k	Slope = k
Half-Life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$

Half-life example

- $AB \rightarrow A + B$
- [AB]0 Initial Rate mol/L·s
- 0.200
- 0.400
- 0.600

- 3.2 x 10⁻³
- 1.28 x 10⁻²
- 2.88 x 10⁻²

Half-life example

- $AB \rightarrow A + B$
- [AB]0 Initial Rate mol/L·s
- 0.200] 2
- 0.400
- 0.600

 $\begin{array}{c|c} \text{Initial Rate MOI/L} \\ 3.2 \times 10^{-3} \\ 1.28 \times 10^{-2} \end{array} \begin{array}{c} 4 \times \\ 2.88 \times 10^{-2} \end{array}$

Since this is a 2nd order rxn

- Half life = $t_{1/2} = 1/k[AB]_0$
- Now we have to determine k
- Rate = $k[AB]^2$
- $3.20 \ge 10^{-3} = k(0.200)^2$
- k= 8.00 x 10-2
- t 1/2 = 1/(8.00 x10-2)(1.00) = 12.5 s

Reaction mechanisms

- Elementary steps that lead to a rxn
- Rate law can be written from the molecularity of the reaction
- Rate determining step. Slowest elementary step
- Steps must sum to balanced equation
- Agree with experimentally determined rate law

- $C_4H_9Br --> C_4H_9^+ + Br^-$ slow
- $C_4H_9^+ + H_2O --> C_4H_9OH_2^+$ fast
- $C_4H_9OH_2^+ + H_2O --> C_4H_9OH + H_3O^+$ fast
- Write the rate law
- Identify intermediates
- Balance eqn

- $C_4H_9Br C_4H_9^+ + Br$ slow
- $C_4H_9^+ + H_2O --> C_4H_9OH_2^+$ fast
- $C_4H_9OH_2^+ + H_2O --> C_4H_9OH + H_3O^+$ fast
- Write the rate law
- This is the rate determining step it is unimolecular so Rate = k[C₄H₉Br]
- 1st order

- $C_4H_9Br C_4H_9^+ + Br^-$ slow
- $C_4H_9^+ + H_2O --> C_4H_9OH_2^+$ fast
- $C_4H_9OH_2^+ + H_2O --> C_4H_9OH + H_3O^+$ fast
- Identify intermediates
- $C_4H_9Br \rightarrow C_4H_9^+ + Br$ slow
- $C_4H_9^+ + H_2O --> C_4H_9OH_2^+$ fast
- $C_4H_9OH_2^+ + H_2O --> C_4H_9OH + H_3O^+$ fast

- Balance eqn
- $C_4H_9Br -> C_4H_9^+ + Br^-$
- $C_4H_9^+ + H_2O --> C_4H_9OH_2^+$
- $\underline{C_4H_9OH_2^+ + H_2O -> C_4H_9OH + H_3O^+}$
- $C_4H_9Br + 2H_2O Br + C_4H_9OH_2 + H_3O^+$

Energy Curves

reaction coordinate

Energy Curves

reaction coordinate

The Arrhenius Equation $k = Ae^{-E_a/RT}$

k = rate constant at temperature T
A = frequency factor
E_a = activation energy
R = Gas constant, 8.31451 J/K·mol

The Arrhenius Equation, Rearranged $\ln(k) = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln(A)$

Simplifies solving for E_a
-E_a/R is the slope when (1/T) is plotted against ln(k)
In(A) is the y-intercept
Linear regression analysis of a table of (1/T) vs. ln(k) can quickly yield a slope
E_a = -R(slope)

Example: $2N_2O_5 --> 4NO_2 + O_2$

- K(1/s) T(C)
- 2.0 x10⁻⁵ 20
- 7.3 x10⁻⁵ 30
- 2.7 x10⁻⁴ 40
- 9.1 x10⁻⁴ 50
- 2.9 x10⁻³ 60

1/T (K) ln (k)

Plot ln(k) vs 1/T get slope

- 1/T (K) ln
- 3.41 x 10 ⁻³
- 3.30 x 10 ⁻³
- 3.19 x 10 -3
- 3.10 x 10 -3
- 3.00 x 10 ⁻³

ln (k) -10.82 -9.53 -8.22 -7.00 -5.84

Slope = $-E_a/R$

Slope = Regression line (if linear)

• $-1.2 \ge 10^4 = -E_a/8.3145$

• $Ea = 1.0 \text{ x} 10^5 \text{ J/mol}$

Effects of catalysts

• Lower Activation energy

Effects of catalysts

• Increase effectiveness of collisions

